Miscellaneous math computations: Corresponding m-m and quantile for confident intervals
Source:R/math.R
mathmisc.Rd
Compute the corresponding quantile given confident interval bounds
Arguments
- ci
confident interval eg. 0.9 for 90 percent confident intervals
- Vmax
The maximum velocity of the enzymatic reaction.
- S
The substrate concentration.
- Km
The substrate concentration at which the reaction rate is half of Vmax.
- V
The current velocity of the enzymatic reaction
- round
round result to number of decimal places
Value
vector of two numeric values for the quantile based on the confident interval chosen
result of calculation of Michaelis-Menten equation
Examples
# Get the bounds for 90% confident intervals
math.qt(0.9)
#> [1] 0.95 0.05
# Get the bounds for 95% confident intervals
# use the bounds to obtain quartile
values = number(100)
values
#> [1] 359260626 368221838 483042687 870131666 62733029 109223237 667995959
#> [8] 351693918 691789031 713603917 81942227 725366888 761862214 786280291
#> [15] 567355881 423975073 368155281 213404111 989796930 920810920 699060670
#> [22] 501683940 651211721 122456571 877662456 242745245 268460318 57187700
#> [29] 483436664 879106300 185263354 729098265 57820740 317418108 991231294
#> [36] 163001476 431725693 55356427 890909582 511030826 586039434 764088705
#> [43] 265678445 922044610 542750453 684796673 985971426 21730612 547744612
#> [50] 113177268 618165892 311652864 847668387 720177668 45533169 35399543
#> [57] 403824668 402159537 967187903 446602062 492371572 849516133 972632371
#> [64] 339960427 207482094 91025226 449917866 392054235 225694087 63416129
#> [71] 658798843 465200626 937148200 251387636 962507853 989139661 238239587
#> [78] 205783011 486979911 433634519 23538982 866274810 428422168 801913291
#> [85] 617613581 180622873 162176338 134378123 851868852 919463090 184563029
#> [92] 69547758 691353684 938521527 561368817 33680892 62541986 944709481
#> [99] 861278716 255574511
ci = math.qt(0.95)
getquart = quantile(values, probs = ci)
getquart
#> 97.5% 2.5%
#> 987634749 34497251
math.mm(3,500,0.5)
#> [1] 2.997003